skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Park, Haejun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Early involvement in engineering research has proven to be a highly effective way to inspire undergraduate students to pursue advanced studies or research-intensive careers. By engaging students in real-world, hands-on research projects, they not only sharpen their problem-solving skills but also develop the intellectual independence needed to tackle complex engineering challenges. These benefits are amplified when the research experience is multidisciplinary, allowing students to engage with topics beyond the confines of their chosen major. Moreover, participation in a collaborative cohort—where continual interactions and shared learning experiences occur—helps foster a sense of community and shared purpose, further enhancing the learning process. This paper presents the outcomes and impacts of a unique undergraduate research program conducted collaboratively between Oklahoma State University, Stillwater, and the University of Alabama in Huntsville. What sets this program apart is its fusion of engineering and engineering technology disciplines, its blend of applied and fundamental research, and its focus on multidisciplinary topics such as human safety, fire protection technology, mechanical engineering technology, electrical engineering, and artificial intelligence. The program engages students from sophomore to senior levels, offering them a chance to explore various research methodologies and work on projects that span multiple fields of engineering. This exposure helps them cultivate a comprehensive understanding of engineering systems and their real-world applications. In this paper, we will delve into the structure and activities of the Research Experiences for Undergraduates (REU) program, discussing its various components as well as the educational and research outcomes it has produced. A central theme of the program is its focus on multidisciplinary research, which ranges from technical fields such as fire protection and mechanical engineering technology to more advanced areas like electrical engineering and artificial intelligence. This breadth of topics ensures that students are equipped with a wide range of skills, from analytical problem-solving to creative thinking, as they learn to approach engineering challenges from multiple perspectives. Additionally, the program’s emphasis on cohort-building activities plays a crucial role in shaping the students’ experiences. By promoting collaboration among students from different disciplines, the program encourages the cross-pollination of ideas, mutual learning, and the development of soft skills such as communication, teamwork, and leadership. The interactions fostered within the cohort help students build a network of peers who share similar academic and career aspirations, strengthening their commitment to research and professional development. The paper will also present the results of both formative and summative assessments of the program, highlighting its impacts on student learning, skill development, and long-term career trajectories. By examining these outcomes, we demonstrate how this collaborative and multidisciplinary research program has successfully nurtured the next generation of independent researchers and engineering leaders, equipping them to meet the challenges of an increasingly complex and interconnected world. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Reactivity trends for molecular solids cannot be explained exclusively through the topochemical phenomenon ( i.e. diffusivity, reaction cavities) or electronic structure of the molecules. As an example of this class, Diels–Alder reactions of small molecules with pentacene thin films are examined to elucidate the importance of surface phenomena to reactivity. Polarization modulation-infrared reflection–absorption spectroscopy (PM-IRRAS) has revealed that vapors from the small molecules condense on the surface, in a non-covalent manner, to form a coating 2–3 molecules thick. The phase of this layer can provide increased surface diffusion (both reactant and product) which rapidly accelerates the reaction rate. Kinetic studies of pentacene thin film reactions demonstrate the importance of this condensed state to trends in reactivity, with layers in a quasi-liquid state showing a rate acceleration of 13–30 times compared to those in a quasi-solid state. Scanning electron microscopy provides further evidence of this phase behavior, while solid-state UV-vis confirms the kinetic results. 
    more » « less